## SYNTHESIS AND CHARACTERIZATION OF 1,2-NITROMETHYLENE STEROIDS

Elliot L. Shapiro\*, Margaret J. Gentles, Lois Weber, and Geoffrey Page 1

Natural Products Research Department Schering Corporation, Bloomfield, New Jersey 07003

Andrew T. McPhail\* and Kay D. Onan

Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706 (Received in USA 5 April 1977; received in UK for publication 18 August 1977)

In an accompanying communication<sup>2</sup> we reported the preparation of steroidal 68,78-nitromethylene steroids, derived from the steroidal 6-chloro-4,6-diene-3-keto unit by treatment with nitromethane in DMF containing NaOMe. We now disclose application of this transformation to the 2-bromo-1-ene-3-keto system, to afford the 1,2-nitromethylene grouping. From our findings, and also those of Kocór and Kroszczynski<sup>3</sup>, it would appear that this method is convenient in a general sense for the preparation of the nitromethylene unit conjugated with carbonyl functions.

Two representative examples have been prepared and their structures and stereochemistries defined unequivocally by single-crystal X-ray analyses. Nitromethylene  $\underline{1}$  was prepared in 44% overall yield from the 2-bromo-1,4,6-triene-17 $\alpha$ -hydroxy  $\underline{2}^5$  [nitromethane, NaOMe, DMF (0.1% water)] via the intermediate nitromethylene-17 $\alpha$ -hydroxy  $\underline{3}$ , followed by esterification [AcOH, (F<sub>3</sub>CCO)<sub>2</sub>O, pTSA]<sup>6</sup>. For the preparation of  $\underline{4}$ , NaOMe (270 mg) was added to a solution consisting of  $\underline{5}^7$  (515 mg, 1 mmol), nitromethane (0.59 ml), DMF (6 ml), and water (0.2 ml). After allowing the solution to stand at room temperature for 16 hours, it was added to a saturated NaCl solution, and the precipitated solid isolated and crystallized from ether-hexane to yield  $\underline{4}$  (69% yield). Chromatography [silica gel preparative plates, 1000 $\mu$ , hexane-EtOAc (2:1)] separated a trace of more polar substance and afforded analytical material 8.

Orthorhombic crystals of  $\underline{1}$  belong to space group  $\underline{P2}_12_12_1$ ,  $\underline{a}=11.14(1)$ ,  $\underline{b}=28.87(1)$ ,  $\underline{c}=6.92(1)$  Å,  $\underline{z}=4$ . Crystals of  $\underline{b}$  are monoclinic, space group  $\underline{P2}_1$ ,  $\underline{a}=12.52(1)$ ,  $\underline{b}=12.34(1)$ ,  $\underline{c}=7.64(1)$  Å,  $\beta=90.8(1)^{\circ}$ ,  $\underline{z}=2$ . Intensities for all unique reflections to  $\theta$  65°( $\underline{1}$ ) and 67°( $\underline{b}$ ) were measured on an Enraf-Nonius CAD 3 diffractometer (Ni-filtered Cu- $\underline{K}_{\alpha}$  radiation,  $\lambda$  1.5418 A) operating in the  $\theta$ -20 scanning mode. Both structures were solved by direct-phasing procedures by use of MULTAN9. Atomic positional and thermal (anisotropic C, N, O; isotropic H) parameters were refined by full-matrix least-squares calculations to  $\underline{R}$  0.065 for  $\underline{1}$  (1196 reflections) and 0.050 for  $\underline{h}$  (1768 reflections). Views of the structures

of  $\underline{1}$  and  $\underline{4}$  are shown in Figures 1 and 2, respectively. The results show that in  $\underline{1}$  the 1,2-methylene unit is  $\alpha$ -oriented whereas the corresponding unit in  $\underline{4}$  is oriented  $\beta$ . In both compounds the nitro group is directed  $\underline{exo}$  with respect to the steroid ring A,  $\underline{i.e.}$   $\underline{1}$  is  $1\alpha,2\alpha$ -methylene-(1'R)-nitro-17 $\alpha$ -hydroxy-4,6-pregnadiene-3,20-dione 17-acetate and  $\underline{4}$  is  $1\beta,2\beta$ -methylene-(1'S)-nitro-16 $\alpha$ -methyl-9 $\alpha$ -fluoro-11 $\beta$ ,17 $\alpha$ ,21-trihydroxy-5 $\beta$ -pregnane-3,20-dione 21-acetate.

No other 1,2-nitromethylene isomer was isolated in addition to  $\underline{1}$  or  $\underline{4}$ . The presumed intermediate in the reaction with  $\underline{2}$  is an enol species  $\underline{6}$  having the  $1\alpha$ -nitromethylene substituent whereas with  $\underline{5}$  (cis A/B fusion) the corresponding intermediate is the  $1\beta$ -nitromethylene  $\underline{7}$ , i.e. in each case the reaction proceeds to generate the axially oriented C-1 adduct. Intermolecular protonation at C-2 followed by proton loss from C-1' or intramolecular proton transfer from C-1' to C-2 would generate the C-1' anion from both  $\underline{6}$  and  $\underline{7}$ . Subsequent elimination of bromide ion would then accompany ring closure to yield the sterically favored  $\underline{exo}$  nitro configuration.

Our stereochemical assignment of the nitromethylene grouping in  $\underline{1}$  by  $\underline{X}$ -ray analysis would also appear to apply to the 1,2-nitromethylene steroids reported in reference 3. For these latter compounds, which differ in C-17 substitution from our related compounds, the acconfiguration of the 1,2-methylene unit was deduced principally on the basis of  $^{1}$ H NMR analysis but the nitro group configuration was not established.

Acknowledgment. We thank Dr. R. Brambilla of the Physical Organic Research Department for helpful discussions with NMR interpretation.

## References and Footnotes

- 1. Schering Postdoctoral Fellow, 1970.
- 2. E.L. Shapiro, G. Page, L. Weber, M.J. Gentles, A.T. McPhail, and K.D. Onan, preceding communication.
- 3. While this manuscript was in preparation, M. Kocor and W. Kroszczynski, <u>Synthesis</u>, 813 (1976), reported on a somewhat similar process for the formation of the 1,2-nitromethylene grouping.
- 4. All new compounds have acceptable analyses.
- 5. Prepared from the 2-desbromo analog of  $\underline{2}$  (Ger. 1,119,266, December 14, 1961, C.A.  $\underline{56}$ , 14373f, and U.S. Patent 2,962,510, November 29, 1960) by bromination in propionic acid, followed by exposure of the isolated crude product to pyridine at  $60^{\circ}$  for 2 hours ( $\lambda_{\text{max}}$  222, 270, and 308 nm;  $\epsilon$  14,380, 11,180, and 9,440, respectively).
- E.L. Shapiro, L. Finckenor, H. Pluchet, L. Weber, C.H. Robinson, E.P. Oliveto, H.L. Herzog, I.I.A. Tabachnick, and E. Collins, Steroids, 9, 143 (1967).
- 7. E.L. Shapiro, M.J. Gentles, A.T. McPhail, and K.D. Onan, J. Chem. Soc. Chem. Comm., 961 (1976), m.p.  $248-250^{\circ}$  dec,  $\left[\alpha\right]_{D}^{26}+61.5^{\circ}$  (dioxane),  $\lambda_{\max}^{\text{MeOH}}$  252.5 nm (\$\varepsilon\$ 7,600); NMR, \$\varepsilon\$ (TMS as internal reference, DMSO-d<sub>6</sub>), 0.73 and 0.82 (16-CH<sub>3</sub>), 0.82 (13-CH<sub>3</sub>), 1.49 (10-CH<sub>3</sub>), 2.16 (21-OCOCH<sub>3</sub>), 3.78-4.13 (11-H), 5.08 (17-OH), 5.26 (d, J = 5.5 Hz, 11-OH), 4.73 and 5.08 (doublets, J = 17.5 Hz, 21-CH<sub>2</sub>), 7.56 (1-H).

- 8. For  $\underline{1}$ , m.p.  $245-246^{\circ}$ ,  $\left[\alpha\right]_{D}^{25+196^{\circ}}$  (dioxane),  $\lambda_{\max}^{\text{MeOH}}$  284 nm ( $\epsilon$  20,100); NMR,  $\delta$  (TMS as internal reference, CDC13), 0.82 (13-CH<sub>3</sub>), 1.3 (10-CH<sub>3</sub>), 2.06 (17-OCOCH<sub>3</sub>), 2.15 (20-CH<sub>3</sub>), 2.7 (d of d, J = 3.5 and 10 Hz, 1-H), 3.10 (m, J = 4 and 10 Hz, 2-H), 4.42 (d of d, J = 2.5 and 3 Hz, 1'-H), 5.7 (d, J = 1 Hz, 4-H), and 6.13 (6- and 7-H). For  $\underline{\mu}$ , m.p. 212-216°,  $\left[\alpha\right]_{D}^{25-16.5^{\circ}}$  (dioxane); NMR,  $\delta$  (DMSO-d<sub>6</sub>), 0.72 and 0.85 (16-CH<sub>3</sub>), 0.85 (13-CH<sub>3</sub>), 1.46 (10-CH<sub>3</sub>), 2.09 (21-OCOCH<sub>3</sub>), 2.84, 2.87 (1-H, 2-H), 4.78 and 4.98 (doublets, J = 17.5 Hz, 21-CH<sub>2</sub>), 4.05-4.47 (11-H), 5.07 (17-OH), 5.17 (d, J = 5 Hz, 11-OH), 5.46 (smeared triplet, J = 2.5 Hz, 1'-H).
- 9. G. Germain, P. Main, and M.M. Woolfson, Acta Cryst, A27, 368 (1971).
- 10. In our accompanying paper (Reference 2), the nitromethylene unit is generated from a C-7β equatorially oriented adduct. We have no explanation at this time for this difference.

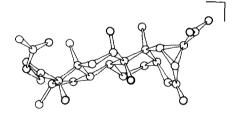



Fig. 1 Structure of  $\underline{1}$ 

Fig. 2 Structure of 4